
Full-Text with PHP and Sphinx

Vladimir Fedorkov @ NYPHP.ORG

September 25th, 2012

About me

• Performance geek

– blog http://astellar.com

– Twitter @vfedorkov

• Enjoy LAMP stack tuning

– Especially MySQL

• Enjoy speaking on the conferences

• Use Sphinx in production from 2006

http://astellar.com/

Search is important

• Keep customer satisfied

– Let visitor find what he need

• Search is the way to explore the website

– Find something that your customer doesn’t know

– Show your customer what you want to show

Good search is important

• And it’s more than one side:

– Speed

• Rule 0.1 ... 1 … 10

– Relevance

– Convenience

– Flexibility

– Simple maintenance

– Fault tolerance

Available solutions

• Most databases has it’s integrated FT engines

– MySQL: MyISAM FT index

• Recently released FT support in InnoDB

• Standalone solutions

– Solr, Lucene, Sphinx.

• External services

– IndexDen, SearchBox, Flying Sphinx, WebSolr, …

Sphinx records

• Standalone open source search server
• Searching though Billions of documents

– Over 30,000,000,000 at Infegy
– Over 26,000,000,000 at boardreader.com

• over 8.6Tb indexed data across 40+ boxes

• Serves 200,000,000+ queries per day
– craigslist.org 2,000+ QPS against 15 Sphinx boxes

• 10-1000x faster than MySQL on full-text searches
– Even faster on faceted search queries

• List is not complete

Example. Search against 8M rows.

mysql> SELECT id, ...
 -> FROM myisam_table
 -> WHERE MATCH(title, content_ft)
 -> AGAINST ('I love sphinx') LIMIT 10;
...
10 rows in set (1.18 sec)

mysql> SELECT * FROM sphinx_index

 -> WHERE MATCH('I love Sphinx') LIMIT 10;

...

10 rows in set (0.05 sec)

MySQL

Sphinx

Closer look

mysql> SELECT *

 -> FROM sphinx_index

 -> WHERE MATCH('I love Sphinx')

 -> LIMIT 5

 -> OPTION field_weights=(title=100, content=1);

+---------+--------+------------+------------+

| id | weight | channel_id | ts |

+---------+--------+------------+------------+

| 7637682 | 101652 | 358842 | 1112905663 |

| 6598265 | 101612 | 454928 | 1102858275 |

| 6941386 | 101612 | 424983 | 1076253605 |

| 6913297 | 101584 | 419235 | 1087685912 |

| 7139957 | 1667 | 403287 | 1078242789 |

+---------+--------+------------+------------+

5 rows in set (0.05 sec)

Key differences

• Meta fields @weight, @group, @count

• No full-text fields in output

– Requires additional lookup to fetch data

• MySQL query become primary key lookup

– WHERE id IN (33, 9, 12, …, 17, 5)

– Good for caching

– Good compatibility with NoSQL date storages

• Scaling is transparent for the application

SQL & SphinxQL

• WITHIN GROUP ORDER BY

• OPTION support for fine tuning

– weights, matches and query time control

• SHOW META query information

• CALL SNIPPETS let you create snippets

• CALL KEYWORDS for statistics

Full-Text functions

• And, Or
– hello | world, hello & world

• Not
– hello -world

• Per-field search
– @title hello @body world

• Field combination
– @(title, body) hello world

• Search within first N
– @body[50] hello

• Phrase search
– “hello world”

• Per-field weights

• Proximity search
– “hello world”~10

• Distance support
– hello NEAR/10 world

• Quorum matching
– "the world is a wonderful

place"/3

• Exact form modifier
– “raining =cats and =dogs”

• Strict order
• Sentence / Zone / Paragraph
• Custom documents weighting

& ranking

Non Full-Text searches

• GEO-distance search support

• Faceted search support

– Date and time segments

– Price ranges and other

• Built in one – to – many attributes

– For page tags

– For multi category items

• Numeric, timestamps and string support

Integration ways

• Indexing
– MySQL, PostgreSQL, MSSQL and any ODBC source

– Insert/Update/Delete for Real-Time engine
• Via SphinxQL

• Search
– API

• PHP, Python, Java, Ruby, C is included in distro

• .NET, Rails (via Thinking Sphinx) via third party libs

– MySQL-compatible protocol

PHP API sample

<?php

require ("sphinxapi.php"); //included in distro

$cl = new SphinxClient();

$cl->SetServer (“127.0.0.1”, 9312);

$res = $cl->Query (“iphone", “shop_items");

//some error processing

var_dump($res)

?>

Via PHP API

Sphinx components

• Indexer

• Indexes

• Daemon

Architecture sample

Architecture sample

Sphinx applications

• Find relevant documents

– Items in store(s)

– Articles in blog/forum/news/etc website(s)

– Pictures or photos

• By text, description, GEO-data, publish time, etc

– Friends

• In social networks or dating websites

• Offload main database from heavy queries

• Build advanced search and search-based services

From search to facets

• Search drill-down
– By category

– By document (item) date
• Today / Week / Month / Year / Others

– By price range

– By distance

• Show best documents
– For front page

– For category/brand/etc pages

Faceted search support

• Usually more than one facet

– Multiquery support

• Common part calculates just once

• Aggregation function support

– MIN(), MAX(), COUNT(), COUNT(DISTINCT …)

• WITHIN GROUP ORDER BY

– Best items in each subgroup

Faceted search: drill-down by years

mysql> SELECT …, YEAR(ts) as yr

 -> FROM sphinx_index

 -> WHERE MATCH('I love Sphinx')

 -> GROUP BY yr

 -> WITHIN GROUP ORDER BY rating DESC

 -> ORDER BY yr DESC

 -> LIMIT 5

 -> OPTION field_weights=(title=100, content=1);

+---------+--------+------------+------------+------+----------+--------+

| id | weight | channel_id | ts | yr | @groupby | @count |

+---------+--------+------------+------------+------+----------+--------+

| 7637682 | 101652 | 358842 | 1112905663 | 2005 | 2005 | 14 |

| 6598265 | 101612 | 454928 | 1102858275 | 2004 | 2004 | 27 |

| 7139960 | 1642 | 403287 | 1070220903 | 2003 | 2003 | 8 |

| 5340114 | 1612 | 537694 | 1020213442 | 2002 | 2002 | 1 |

| 5744405 | 1588 | 507895 | 995415111 | 2001 | 2001 | 1 |

+---------+--------+------------+------------+------+----------+--------+

5 rows in set (0.00 sec)

Misspells correction service

• Provides correct search phrase

– “Did you mean” service

• Allows to replace user’s search on the fly

– if we’re sure it’s a typo

• “ophone”, “uphone”, etc

– Saves time and makes website look smart

• Based on your actual database

– Effective if you DO have correct words in index

Bundled solution

• Helper script is located in /misc/suggest/

– suggest.conf includes required Sphinx index

– suggest.php is an actual implementation

• Requires PHP and MySQL to work

• Based on the tri-grams & levenshtein function

Limitations and features

• Provided as a showcase, not a complete service

• Doesn’t work with UTF8
– PHP function limitation

• Based on your actual database
– Index required rebuild as you have new data

• Script is only provides you word-by-word
correction

• Works better in combination with
autocompletion service

Autocompletion service

• Suggest search queries as user types

– Show most popular queries

– Promote searches that leads to desired pages

– Might include misspells correction

Implementation

• Enable prefix indexing

– Set min_prefix_len and prefix_fields

• Use pre-built index with search prases

– Based on user’s input

– Based on document statistics

• Use star search: MATCH (‘ipho*’)

– It’s sometimes wise to delay search until 3-4
letters has typed

Related search

• Improving visitor experience

– Providing easier access to useful pages

– Keep customer on the website

– Increasing sales and server’s load average

• Based on documents similarity

– Different for shopping items and texts

– Ends up in data mining

Implementation

• Uses main Sphinx index
• Basic implementation uses quorum operator

– “Sony NEX-5N”/2
– “Mitt Romney wonders why airplane windows don’t

open”/2

• Next step: use custom ranking
• Next step: enable statistics

– Keywords/Phrases
– Shopping experience

• Next step: use internal information

Quick summary

• Basic search

• Facets

• Search-based services
– Misspells

– Autocompletion

– Related

• Speeding up search
– Advanced tricks

– Scaling & clouds

Non Full Text Search

• Offloading database from bad queries

– Heavy & Long running

– That can’t be efficiently handled

• Flags enabled = 1

• Can be combined with full-text queries

– On plain queries

– In faceted search

GEO-Distance support

• Geographical distance is the distance
measured along the surface of the earth

– Two pairs of float values (Latitude, Longitude)

• GEODIST(Lat, Long, Lat2, Long2) in Sphinx

 SELECT *, GEODIST(docs_lat, doc_long, %d1, %d2) as dist,

 FROM sphinx_index

 ORDER BY dist DESC

 LIMIT 0, 20

Search within range

• Grouping results by
– Price ranges (items, offers)
– Date range (blog posts and news articles)
– Ratings (product reviews)

• INTERVAL(field, x0, x1, …, xN)

 SELECT
 INTERVAL(item_price, 0, 20, 50, 90) as range,
 @count
 FROM my_sphinx_products
 GROUP BY range
 ORDER BY range ASC;

Text search for integers

• Meta keywords search sometimes faster

– __META_AUTHOR_ID_3235

– __META_AUTHOR_NAME_Kelby

• First letter search

– __ARTIST_A, __ARTIST_B, __ARTIST_C, …

• Static ranges emulation with meta keywords

– __MY_RANGE_0, __MY_RANGE_1, …

• Not flexible, but fast

Another way to speed up is scaling

• Combine diffrent indexes

– Main + Delta

– Ondisk + RT

– Distributed and local

• Don't forget about dist_threads!

• Use parallel indexing

OnDisk indexes

On disk vs Real-time indexes

Bright side of scaling

• Faster search

• Better load control

• Hardware utilization

Dark side

• Hardware faults

• Network issues

• Balancing issues

– Search time related to slowest search chunk

• Complicated operations

How to survive

• Compact indexes

– Remove stopwords

– Use bitmasks

• Set max_matches to an appropriate value

• Emergency controls

– cutoff

– max_query_time

How to survive II

• Tune distributed indexes

– Concurrency control

• dist_threads

• max_children

– Network & wait timeouts

• agent_connect_timeout

• agent_query_timeout

Use redundant indexes

• Sphinx will remove duplications automatically

– You will have complete results event if node fails

• Use Sphinx HA

– Not yet public

• Could be found in trunk!

More info

• http://sphinxsearch.com/docs
• Conferences

– I’ll be doing Sphinx tutorial Oct 1st at Percona Live NY
– Sphinx team at Oracle Open World & MySQL connect in

San Francisco

• Invite me to speak
– Ping me via email vlad@astellar.com

• Follow me on twitter @vfedorkov
• http://astellar.com

– Upcoming webinars

• Ask questions here

http://sphinxsearch.com/docs
http://sphinxsearch.com/docs
http://astellar.com/

Thank you!

